Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
ACS Chem Biol ; 16(4): 642-650, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33787221

RESUMO

Host-cell cysteine proteases play an essential role in the processing of the viral spike protein of SARS coronaviruses. K777, an irreversible, covalent inactivator of cysteine proteases that has recently completed phase 1 clinical trials, reduced SARS-CoV-2 viral infectivity in several host cells: Vero E6 (EC50< 74 nM), HeLa/ACE2 (4 nM), Caco-2 (EC90 = 4.3 µM), and A549/ACE2 (<80 nM). Infectivity of Calu-3 cells depended on the cell line assayed. If Calu-3/2B4 was used, EC50 was 7 nM, but in the ATCC Calu-3 cell line without ACE2 enrichment, EC50 was >10 µM. There was no toxicity to any of the host cell lines at 10-100 µM K777 concentration. Kinetic analysis confirmed that K777 was a potent inhibitor of human cathepsin L, whereas no inhibition of the SARS-CoV-2 cysteine proteases (papain-like and 3CL-like protease) was observed. Treatment of Vero E6 cells with a propargyl derivative of K777 as an activity-based probe identified human cathepsin B and cathepsin L as the intracellular targets of this molecule in both infected and uninfected Vero E6 cells. However, cleavage of the SARS-CoV-2 spike protein was only carried out by cathepsin L. This cleavage was blocked by K777 and occurred in the S1 domain of the SARS-CoV-2 spike protein, a different site from that previously observed for the SARS-CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of cathepsin L-mediated viral spike protein processing.


Assuntos
Antivirais/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Fenilalanina/farmacologia , Piperazinas/farmacologia , SARS-CoV-2/efeitos dos fármacos , Compostos de Tosil/farmacologia , Animais , Catepsina L/antagonistas & inibidores , Catepsina L/metabolismo , Linhagem Celular Tumoral , Chlorocebus aethiops , Humanos , Testes de Sensibilidade Microbiana , Domínios Proteicos , Proteólise , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Células Vero , Internalização do Vírus/efeitos dos fármacos
2.
bioRxiv ; 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33140046

RESUMO

K777 is a di-peptide analog that contains an electrophilic vinyl-sulfone moiety and is a potent, covalent inactivator of cathepsins. Vero E6, HeLa/ACE2, Caco-2, A549/ACE2, and Calu-3, cells were exposed to SARS-CoV-2, and then treated with K777. K777 reduced viral infectivity with EC50 values of inhibition of viral infection of: 74 nM for Vero E6, <80 nM for A549/ACE2, and 4 nM for HeLa/ACE2 cells. In contrast, Calu-3 and Caco-2 cells had EC50 values in the low micromolar range. No toxicity of K777 was observed for any of the host cells at 10-100 µM inhibitor. K777 did not inhibit activity of the papain-like cysteine protease and 3CL cysteine protease, encoded by SARS-CoV-2 at concentrations of ≤ 100 µM. These results suggested that K777 exerts its potent anti-viral activity by inactivation of mammalian cysteine proteases which are essential to viral infectivity. Using a propargyl derivative of K777 as an activity-based probe, K777 selectively targeted cathepsin B and cathepsin L in Vero E6 cells. However only cathepsin L cleaved the SARS-CoV-2 spike protein and K777 blocked this proteolysis. The site of spike protein cleavage by cathepsin L was in the S1 domain of SARS-CoV-2 , differing from the cleavage site observed in the SARS CoV-1 spike protein. These data support the hypothesis that the antiviral activity of K777 is mediated through inhibition of the activity of host cathepsin L and subsequent loss of viral spike protein processing.

3.
PLoS Negl Trop Dis ; 14(9): e0008726, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970692

RESUMO

Chagas' Disease, caused by the protozoan parasite Trypanosoma cruzi, is responsible for up to 41% of the heart failures in endemic areas in South America and is an emerging infection in regions of North America, Europe, and Asia. Treatment is suboptimal due to two factors. First, the lack of an adequate biomarker to predict disease severity and response to therapy; and second, up to 120-days treatment course coupled with a significant incidence of adverse effects from the drug currently used. Because the disease can manifest itself clinically a few years to decades after infection, controversy remains concerning the suitability of current drug treatment (benznidazole), and the efficacy of alternative drugs (e.g. posaconazole). We therefore followed the clinical course, and PCR detection of parasite burden, in a mouse model of infection for a full year following treatment with benznidazole or posaconazole. Efficacy of the two drugs depended on whether the treatment was performed during the acute model or the chronic model of infection. Posaconazole was clearly superior in treatment of acute disease whereas only benznidazole had efficacy in the chronic model. These results have important implications for the design and analysis of human clinical trials, and the use of specific drugs in specific clinical settings.


Assuntos
Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Triazóis/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Administração Oral , Animais , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Seguimentos , Masculino , Camundongos Endogâmicos C57BL , Nitroimidazóis/administração & dosagem , Reação em Cadeia da Polimerase , Triazóis/administração & dosagem , Tripanossomicidas/farmacologia , Trypanosoma cruzi/isolamento & purificação
4.
Pharm Res ; 36(2): 27, 2018 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-30560386

RESUMO

PURPOSE: Neglected tropical diseases (NTDs) represent are a heterogeneous group of communicable diseases that are found within the poorest populations of the world. There are 23 NTDs that have been prioritized by the World Health Organization, which are endemic in 149 countries and affect more than 1.4 billion people, costing these developing economies billions of dollars annually. The NTDs result from four different causative pathogens: protozoa, bacteria, helminth and virus. The majority of the diseases lack effective treatments. Therefore, new therapeutics for NTDs are desperately needed. METHODS: We describe various high throughput screening and computational approaches that have been performed in recent years. We have collated the molecules identified in these studies and calculated molecular properties. RESULTS: Numerous global repurposing efforts have yielded some promising compounds for various neglected tropical diseases. These compounds when analyzed as one would expect appear drug-like. Several large datasets are also now in the public domain and this enables machine learning models to be constructed that then facilitate the discovery of new molecules for these pathogens. CONCLUSIONS: In the space of a few years many groups have either performed experimental or computational repurposing high throughput screens against neglected diseases. These have identified compounds which in many cases are already approved drugs. Such approaches perhaps offer a more efficient way to develop treatments which are generally not a focus for global pharmaceutical companies because of the economics or the lack of a viable market. Other diseases could perhaps benefit from these repurposing approaches.


Assuntos
Simulação por Computador , Reposicionamento de Medicamentos/métodos , Doenças Negligenciadas/classificação , Doenças Negligenciadas/tratamento farmacológico , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala/métodos , Humanos , Fenótipo
7.
Artigo em Inglês | MEDLINE | ID: mdl-29437629

RESUMO

In seeking substitutions for the current Chagas disease treatment, which has several relevant side effects, new therapeutic candidates have been extensively investigated. In this context, a balanced interaction between mediators of the host immune response seems to be a key element for therapeutic success, as a proinflammatory microenvironment modulated by interleukin-10 (IL-10) is shown to be relevant to potentiate anti-Trypanosoma cruzi drug activity. This study aimed to identify the potential immunomodulatory activities of the anti-T. cruzi K777, pyronaridine (PYR), and furazolidone (FUR) compounds in peripheral blood mononuclear cells (PBMC) from noninfected (NI) subjects and chronic Chagas disease (CD) patients. Our results showed low cytotoxicity to PBMC populations, with 50% cytotoxic concentrations (CC50) of 71.0 µM (K777), 9.0 µM (PYR), and greater than 20 µM (FUR). In addition, K777 showed no impact on the exposure index (EI) of phytohemagglutinin-stimulated leukocytes (PHA), while PYR and FUR treatments induced increased EI of monocytes and T lymphocytes at late stages of apoptosis in NI subjects. Moreover, K777 induced a more prominent proinflammatory response (tumor necrosis factor alpha-positive [TNF-α+] CD8+/CD4+, gamma interferon-positive [IFN-γ+] CD4+/CD8+ modulated by interleukin-10-positive [IL-10+] CD4+ T/CD8+ T) than did PYR (TNF-α+ CD8+, IL-10+ CD8+) and FUR (TNF-α+ CD8+, IL-10+ CD8+). Signature analysis of intracytoplasmic cytokines corroborated the proinflammatory/modulated (K777) and proinflammatory (PYR and FUR) profiles previously found. In conclusion, the lead compound K777 may induce beneficial changes in the immunological profile of patients presenting the chronic phase of Chagas disease and may contribute to a more effective therapy against the disease.


Assuntos
Fatores Imunológicos/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Doença de Chagas/prevenção & controle , Furazolidona/farmacologia , Leucócitos/efeitos dos fármacos , Naftiridinas/farmacologia , Fito-Hemaglutininas/farmacologia
8.
PLoS Negl Trop Dis ; 11(12): e0006132, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29281643

RESUMO

BACKGROUND: Chagas disease, caused by the protozoan Trypanosoma cruzi, is the leading cause of heart failure in Latin America. The clinical treatment of Chagas disease is limited to two 60 year-old drugs, nifurtimox and benznidazole, that have variable efficacy against different strains of the parasite and may lead to severe side effects. CYP51 is an enzyme in the sterol biosynthesis pathway that has been exploited for the development of therapeutics for fungal and parasitic infections. In a target-based drug discovery program guided by x-ray crystallography, we identified the 4-aminopyridyl-based series of CYP51 inhibitors as being efficacious versus T.cruzi in vitro; two of the most potent leads, 9 and 12, have now been evaluated for toxicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: Both acute and chronic animal models infected with wild type or transgenic T. cruzi strains were evaluated. There was no evidence of toxicity in the 28-day dosing study of uninfected animals, as judged by the monitoring of multiple serum and histological parameters. In two acute models of Chagas disease, 9 and 12 drastically reduced parasitemia, increased survival of mice, and prevented liver and heart injury. None of the compounds produced long term sterile cure. In the less severe acute model using the transgenic CL-Brenner strain of T.cruzi, parasitemia relapsed upon drug withdrawal. In the chronic model, parasitemia fell to a background level and, as evidenced by the bioluminescence detection of T. cruzi expressing the red-shifted luciferase marker, mice remained negative for 4 weeks after drug withdrawal. Two immunosuppression cycles with cyclophosphamide were required to re-activate the parasites. Although no sterile cure was achieved, the suppression of parasitemia in acutely infected mice resulted in drastically reduced inflammation in the heart. CONCLUSIONS/SIGNIFICANCE: The positive outcomes achieved in the absence of sterile cure suggest that the target product profile in anti-Chagasic drug discovery should be revised in favor of safe re-administration of the medication during the lifespan of a Chagas disease patient. A medication that reduces parasite burden may halt or slow progression of cardiomyopathy and therefore improve both life expectancy and quality of life.


Assuntos
Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Parasitemia/tratamento farmacológico , Pirimidinas/uso terapêutico , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/efeitos adversos , Animais , Doença de Chagas/parasitologia , Modelos Animais de Doenças , Descoberta de Drogas , Feminino , Coração/efeitos dos fármacos , Chumbo/química , Chumbo/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocárdio/patologia , Parasitemia/parasitologia , Pirimidinas/efeitos adversos , Esterol 14-Desmetilase/metabolismo , Esteróis/biossíntese , Tripanossomicidas/efeitos adversos
9.
Anal Chem ; 89(19): 10414-10421, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28892370

RESUMO

Trypanosoma cruzi parasites are the causative agents of Chagas disease, a leading infectious form of heart failure whose pathogenesis is still not fully characterized. In this work, we applied untargeted liquid chromatography-tandem mass spectrometry to heart sections from T. cruzi-infected and uninfected mice. We combined molecular networking and three-dimensional modeling to generate chemical cartographical heart models. This approach revealed for the first time preferential parasite localization to the base of the heart and regiospecific distributions of nucleoside derivatives and eicosanoids, which we correlated to tissue-damaging immune responses. We further detected novel cardiac chemical signatures related to the severity and ultimate outcome of the infection. These signatures included differential representation of higher- vs lower-molecular-weight carnitine and phosphatidylcholine family members in specific cardiac regions of mice infected with lethal or nonlethal T. cruzi strains and doses. Overall, this work provides new insights into Chagas disease pathogenesis and presents an analytical chemistry approach that can be broadly applied to the study of host-microbe interactions.


Assuntos
Coração/parasitologia , Miocárdio/química , Espectrometria de Massas em Tandem , Trypanosoma cruzi/patogenicidade , Animais , Área Sob a Curva , Carnitina/química , Carnitina/metabolismo , Doença de Chagas/diagnóstico , Doença de Chagas/parasitologia , Doença de Chagas/veterinária , Cromatografia Líquida de Alta Pressão , Eicosanoides/química , Eicosanoides/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Miocárdio/patologia , Nucleosídeos/análogos & derivados , Nucleosídeos/metabolismo , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Análise de Componente Principal , Curva ROC
10.
J Nanosci Nanotechnol ; 15(2): 1708-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26353719

RESUMO

Efficient oligonucleotide probe design and synthesis based on polymer-coated CdSe/ZnS quantum dot (QD) is demonstrated for detection of telomeres in human monocyte and Leishmania major, a protozoan pathogenic parasite. The highly photoluminescent polymer-coated QDs conjugated with various length of telomere probe sequences were prepared via carbodiimide chemistry and characterized. Specific detection of telomere was observed when DNA sequence was (CCCAAT)n (n = 5 or 3) probe sequence, rather than (GGGTTA)n (n = 3, 5, 8). The sensitivity and specificity were comparable with commercially available PNA probe for human telomere detection.


Assuntos
DNA/genética , Hibridização in Situ Fluorescente/métodos , Leishmania major/genética , Pontos Quânticos , Análise de Sequência de DNA/métodos , Telômero/genética , Sequência de Bases , DNA/química , Sondas de DNA/genética , Desenho de Equipamento , Análise de Falha de Equipamento , Teste de Materiais , Dados de Sequência Molecular , Nanoconjugados/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
PLoS Negl Trop Dis ; 9(6): e0003878, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114876

RESUMO

BACKGROUND: Chagas disease is a neglected tropical disease (NTD) caused by the eukaryotic parasite Trypanosoma cruzi. The current clinical and preclinical pipeline for T. cruzi is extremely sparse and lacks drug target diversity. METHODOLOGY/PRINCIPAL FINDINGS: In the present study we developed a computational approach that utilized data from several public whole-cell, phenotypic high throughput screens that have been completed for T. cruzi by the Broad Institute, including a single screen of over 300,000 molecules in the search for chemical probes as part of the NIH Molecular Libraries program. We have also compiled and curated relevant biological and chemical compound screening data including (i) compounds and biological activity data from the literature, (ii) high throughput screening datasets, and (iii) predicted metabolites of T. cruzi metabolic pathways. This information was used to help us identify compounds and their potential targets. We have constructed a Pathway Genome Data Base for T. cruzi. In addition, we have developed Bayesian machine learning models that were used to virtually screen libraries of compounds. Ninety-seven compounds were selected for in vitro testing, and 11 of these were found to have EC50 < 10 µM. We progressed five compounds to an in vivo mouse efficacy model of Chagas disease and validated that the machine learning model could identify in vitro active compounds not in the training set, as well as known positive controls. The antimalarial pyronaridine possessed 85.2% efficacy in the acute Chagas mouse model. We have also proposed potential targets (for future verification) for this compound based on structural similarity to known compounds with targets in T. cruzi. CONCLUSIONS/ SIGNIFICANCE: We have demonstrated how combining chemoinformatics and bioinformatics for T. cruzi drug discovery can bring interesting in vivo active molecules to light that may have been overlooked. The approach we have taken is broadly applicable to other NTDs.


Assuntos
Doença de Chagas/parasitologia , Descoberta de Drogas/métodos , Genoma de Protozoário/genética , Aprendizado de Máquina , Tripanossomicidas/farmacologia , Trypanosoma cruzi/genética , Animais , Teorema de Bayes , Linhagem Celular , Doença de Chagas/tratamento farmacológico , Biologia Computacional , Modelos Animais de Doenças , Feminino , Ensaios de Triagem em Larga Escala , Humanos , Redes e Vias Metabólicas , Camundongos , Camundongos Endogâmicos BALB C , Tripanossomicidas/isolamento & purificação , Trypanosoma cruzi/efeitos dos fármacos
12.
Infect Immun ; 83(5): 1853-68, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25690103

RESUMO

Leishmania donovani, a protozoan parasite, is the causative agent of visceral leishmaniasis. It lives and multiplies within the harsh environment of macrophages. In order to investigate how intracellular parasite manipulate the host cell environment, we undertook a quantitative proteomic study of human monocyte-derived macrophages (THP-1) following infection with L. donovani. We used the isobaric tags for relative and absolute quantification (iTRAQ) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to compare expression profiles of noninfected and L. donovani-infected THP-1 cells. We detected modifications of protein expression in key metabolic pathways, including glycolysis and fatty acid oxidation, suggesting a global reprogramming of cell metabolism by the parasite. An increased abundance of proteins involved in gene transcription, RNA splicing (heterogeneous nuclear ribonucleoproteins [hnRNPs]), histones, and DNA repair and replication was observed at 24 h postinfection. Proteins involved in cell survival and signal transduction were more abundant at 24 h postinfection. Several of the differentially expressed proteins had not been previously implicated in response to the parasite, while the others support the previously identified proteins. Selected proteomics results were validated by real-time PCR and immunoblot analyses. Similar changes were observed in L. donovani-infected human monocyte-derived primary macrophages. The effect of RNA interference (RNAi)-mediated gene knockdown of proteins validated the relevance of the host quantitative proteomic screen. Our findings indicate that the host cell proteome is modulated after L. donovani infection, provide evidence for global reprogramming of cell metabolism, and demonstrate the complex relations between the host and parasite at the molecular level.


Assuntos
Leishmania donovani/imunologia , Macrófagos/química , Macrófagos/parasitologia , Proteoma/análise , Linhagem Celular , Cromatografia Líquida , Perfilação da Expressão Gênica , Humanos , Immunoblotting , Macrófagos/imunologia , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Espectrometria de Massas em Tandem
13.
Antimicrob Agents Chemother ; 59(5): 2666-77, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25712353

RESUMO

The pressing need for better drugs against Chagas disease, African sleeping sickness, and schistosomiasis motivates the search for inhibitors of cruzain, rhodesain, and Schistosoma mansoni CB1 (SmCB1), the major cysteine proteases from Trypanosoma cruzi, Trypanosoma brucei, and S. mansoni, respectively. Thiosemicarbazones and heterocyclic analogues have been shown to be both antitrypanocidal and inhibitory against parasite cysteine proteases. A series of compounds was synthesized and evaluated against cruzain, rhodesain, and SmCB1 through biochemical assays to determine their potency and structure-activity relationships (SAR). This approach led to the discovery of 6 rhodesain, 4 cruzain, and 5 SmCB1 inhibitors with 50% inhibitory concentrations (IC50s) of ≤ 10 µM. Among the compounds tested, the thiosemicarbazone derivative of peracetylated galactoside (compound 4i) was discovered to be a potent rhodesain inhibitor (IC50 = 1.2 ± 1.0 µM). The impact of a range of modifications was determined; removal of thiosemicarbazone or its replacement by semicarbazone resulted in virtually inactive compounds, and modifications in the sugar also diminished potency. Compounds were also evaluated in vitro against the parasites T. cruzi, T. brucei, and S. mansoni, revealing active compounds among this series.


Assuntos
Catepsina B/metabolismo , Cisteína Endopeptidases/metabolismo , Inibidores de Cisteína Proteinase/síntese química , Proteínas de Protozoários/metabolismo , Schistosoma mansoni/efeitos dos fármacos , Schistosoma mansoni/enzimologia , Tripanossomicidas/síntese química , Animais , Inibidores de Cisteína Proteinase/química , Inibidores de Cisteína Proteinase/farmacologia , Ativação Enzimática/efeitos dos fármacos , Tripanossomicidas/química , Tripanossomicidas/farmacologia
14.
Cell Syst ; 1(6): 377-9, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-27136350

RESUMO

Machine learning can be used to predict compounds acting synergistically, and this could greatly expand the universe of available potential treatments for diseases that are currently hidden in the dark chemical matter.

15.
J Med Chem ; 57(23): 10162-75, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25393646

RESUMO

Chagas disease is a chronic infection in humans caused by Trypanosoma cruzi and manifested in progressive cardiomyopathy and/or gastrointestinal dysfunction. Limited therapeutic options to prevent and treat Chagas disease put 8 million people infected with T. cruzi worldwide at risk. CYP51, involved in the biosynthesis of the membrane sterol component in eukaryotes, is a promising drug target in T. cruzi. We report the structure-activity relationships (SAR) of an N-arylpiperazine series of N-indolyloxopyridinyl-4-aminopropanyl-based inhibitors designed to probe the impact of substituents in the terminal N-phenyl ring on binding mode, selectivity and potency. Depending on the substituents at C-4, two distinct ring binding modes, buried and solvent-exposed, have been observed by X-ray structure analysis (resolution of 1.95-2.48 Å). The 5-chloro-substituted analogs 9 and 10 with no substituent at C-4 demonstrated improved selectivity and potency, suppressing ≥ 99.8% parasitemia in mice when administered orally at 25 mg/kg, b.i.d., for 4 days.


Assuntos
Inibidores de 14-alfa Desmetilase/síntese química , Piperazinas/síntese química , Piridinas/síntese química , Tripanossomicidas/síntese química , Inibidores de 14-alfa Desmetilase/farmacocinética , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Animais , Doença de Chagas/tratamento farmacológico , Cristalografia por Raios X , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Piperazinas/farmacocinética , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Piridinas/farmacocinética , Piridinas/farmacologia , Piridinas/uso terapêutico , Relação Estrutura-Atividade , Tripanossomicidas/farmacocinética , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/enzimologia
16.
J Med Chem ; 57(16): 6989-7005, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25101801

RESUMO

CYP51 is a P450 enzyme involved in the biosynthesis of the sterol components of eukaryotic cell membranes. CYP51 inhibitors have been developed to treat infections caused by fungi, and more recently the protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease. To specifically optimize drug candidates for T. cruzi CYP51 (TcCYP51), we explored the structure-activity relationship (SAR) of a N-indolyl-oxopyridinyl-4-aminopropanyl-based scaffold originally identified in a target-based screen. This scaffold evolved via medicinal chemistry to yield orally bioavailable leads with potent anti-T. cruzi activity in vivo. Using an animal model of infection with a transgenic T. cruzi Y luc strain expressing firefly luciferase, we prioritized the biaryl and N-arylpiperazine analogues by oral bioavailability and potency. The drug-target complexes for both scaffold variants were characterized by X-ray structure analysis. Optimization of both binding mode and pharmacokinetic properties of these compounds led to potent inhibitors against experimental T. cruzi infection.


Assuntos
Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , 4-Aminopiridina/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Inibidores de 14-alfa Desmetilase/farmacocinética , Administração Oral , Animais , Disponibilidade Biológica , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Técnicas de Química Sintética , Cristalografia por Raios X , Ciclodextrinas/química , Ciclodextrinas/farmacocinética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Luciferases de Vaga-Lume/genética , Camundongos , Organismos Geneticamente Modificados , Polietilenoglicóis/farmacocinética , Estearatos/farmacocinética , Relação Estrutura-Atividade , Distribuição Tecidual , Tripanossomicidas/administração & dosagem , Tripanossomicidas/química , Tripanossomicidas/farmacocinética , Trypanosoma cruzi/genética
17.
ACS Med Chem Lett ; 5(2): 149-53, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900788

RESUMO

A phenotypic high-throughput screen using ∼100,000 compounds prepared using Diversity-Oriented Synthesis yielded stereoisomeric compounds with nanomolar growth-inhibition activity against the parasite Trypanosoma cruzi, the etiological agent of Chagas disease. After evaluating stereochemical dependence on solubility, plasma protein binding and microsomal stability, the SSS analogue (5) was chosen for structure-activity relationship studies. The p-phenoxy benzyl group appended to the secondary amine could be replaced with halobenzyl groups without loss in potency. The exocyclic primary alcohol is not needed for activity but the isonicotinamide substructure is required for activity. Most importantly, these compounds are trypanocidal and hence are attractive as drug leads for both acute and chronic stages of Chagas disease. Analogue (5) was nominated as the molecular libraries probe ML341 and is available through the Molecular Libraries Probe Production Centers Network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...